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Abstract 

Though recent literature uncovers linkages between commodity prices and conflict, 

the causal direction of the relationship remains ambiguous. We attempt to contribute 

in this strand of research by studying the dynamic relationship of commodity prices 

and the onsets of conflict events in Sudan. Using monthly data ranging from January 

2001 through December 2012, we identify a structural breakpoint in the multivariate 

time series model of prices of the three staple foods (sorghum, millet, and wheat) and 

conflict measure (number of conflict events) in September of 2011. Applying 

Structure Vector Autoregression (SVAR) and Linear Non-Gaussian Acyclic Model 

(LiNGAM), we find that wheat price is a cause of conflict events in Sudan. We find 

no feedback from conflict to commodity prices. 
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1. Introduction 

Higher food prices have detrimental consequences on the socio-political events in 

developing countries (FAO±SIFSIA, 2012) and have been shown to be related to 

civilian unrest as well (Bellemare, 2011; Besley and Persson, 2008; Goldstone, 1982; 

Lagi et al., 2011; Smith, 2014). World food prices surged to a record high in February 

2011, which served as a catalyst for a series of protests in North Africa and the 

0LGGOH�(DVW��LQFOXGLQJ�WKH������³$UDE�6SULQJ´��%HOOHPDUH��������Brinkman and 

Hendrix, 2011). Although recent literature establishes causal linkages between food 

prices and conflict, the direction of the causality is still unclear. Provided that food 

prices continue to stay high, its causal direction and shock responses of conflict 

remain a germane investigation. Our study contributes to this strand of studies by 

investigating the causal relationships of staple commodity prices and conflict events 

in Sudan. Using Structural Vector Autoregression (SVAR) techniques and modern 

innovations of computer science search algorithms, we discover that commodity 

prices, especially imported ones, drive conflict events in Sudan. 

Consistent with the general experience in the developing world, the prices of staple 

foods in Sudan increased alarmingly in 2008 (FAO±SIFSIA, 2012). The region has 

been beleaguered by intense armed conflict in recent years. Particularly��6XGDQ¶V�
second civil war (1983 ± 2005) is characterized as one of longest enduring, 

catastrophic wars during the late 20th century (Say et al., 2012). On July 9, after the 

referendum in January 2011, South Sudan seceded from Sudan and became an 

independent country, indicating the end of Comprehensive Peace Agreement (CPA) 

which was signed in 2005 (FAO/WFP, 2014). Despite the independence and enduring 

efforts at stabilization, Sudan remains volatile due to the frequency of low-medium 

level conflict onsets (Raleigh et al., 2010). Recent literature shows numerous factors 

driving conflict: growing population (Collier and Hoeffler, 2004), natural resource 

endowments (Collier and Hoeffler, 1998), economic conditions such as income levels 

and economic growth (Berazneva and Lee, 2013; Blattman and Miguel, 2010; Miguel 

et al., 2004), fragile institutions and geographical attributes (Blattman and Miguel, 

2010), quick and significant demographic changes such as migration (Goldstone, 

2002). However, a time variant examination of the topic is yet to be conducted. With 

the existing inequality and unrest across regions, the soaring food prices could 

exacerbate the weak purchasing power of its citizens (IFAD, 2009). Given the conflict 

onsets, rising food prices and low political stability in the region, Sudan is an ideal 

country to investigate the dynamic relationships between cereal prices and conflict. 

Sorghum, millet, and wheat are the main cereals consumed in Sudan (Hamid, 2003). 

Sorghum is the highest consumed commodity followed by wheat and millet. Sudan is 



self-sustainable in sorghum and millet production (Abdelrahman, 1998), while it 

produces at most 20% of its net wheat demand (FAO/WFP, 2011). Consumption of 

these cereals differs by regions and socio-economic status of the citizens. Sorghum 

serves as the main staple for the most impoverished in central and eastern Sudan, 

while millet is the staple for most people in Darfur and some regions in the western 

Sudan (FEWS NET, 2014a). In current times, wheat is usually treated as a substitute 

for sorghum and millet in northern Sudan, especially in the urban areas (Mustafa et 

al., 2013; FEWS NET, 2014a). Mustafa et al. (2013) report that the average 

consumption of wheat has increased to 1770.8 thousand tons in the 2000s from 743.5 

thousand tons in the 1980s. Consequently, imports of wheat have increased 

substantially since 1999, and the imports amount accounted for about 75 percent of 

the wheat consumption from 2000 to 2010 (Mustafa et al., 2013). Increased imports 

caused higher price volatility and government intervention. Furthermore, the high 

volume of wheat imports absorbs almost all of the foreign exchange generated from 

total agricultural exports (Auad et al., 2007). 

In a recent report, Famine Warning Systems Network (FEWS NET, 2014b) reports 

that 3.3 million people would face stressed and crisis levels of food insecurity, mainly 

caused by increasing food prices and conflict. Mahran (1996) approaches this topic 

from demand and supply perspective. Misselhorn (2005), using meta-analysis based 

on 49 household economy local-level studies, reveals the causes of food insecurity in 

southern Africa including conflict, poverty, and environmental factors. Hadley et al. 

(2012) conduct twenty semi-structured interviews in Africa and conclude that the rise 

in food prices could decrease food security, including non-nutritional results. Given 

previous studies and reports, it is plausible to draw the conjecture that rising cereal 

prices, violent activities, and the food shortage in Sudan are not unrelated. However, 

contemporary research does not draw direct time variant inference between food 

prices and conflict, especially in the Sudanese context. We address this gap in the 

literature by studying a time series dataset on commodity prices and conflict events in 

Sudan. In this article, we attempt to use Inductive Causation (IC) methods (Spirtes et 

al., 2000) to inform us on contemporaneous structure. Our treatment of the non-

Gaussian commodity treatment is different from the contemporary social science 

literature, as we employ Linear Non-Gaussian Acyclic Model. We use a Bernanke-

like Structure Vector Autoregression (SVAR) model to summarize the dynamic 

causal relationships between commodity prices and conflict. The rest of the paper is 

organized as follows: Section 2 provides a literature review on the relationship of 

food prices and conflict; Section 3 introduces the major methodology applied; Section 

4 describes the dataset; Section 5 presents the results of estimation and Section 6 

summarizes the conclusion and provides some policy implications. 



2. Background and Literature Review 

Current literature offers ample evidence of linkages between increasing food prices 

and conflict. While rising food prices may not be the direct drivers for conflict, they 

may well be latent drivers of conflict. High food prices increase food insecurity and 

can lead to social and political instability and conflict. A reverse causal flow can be 

argued as well. The outbreak of conflict may increase food prices because of radical 

ramifications such as increasing disease, death and displacement, soaring military 

expense, and capital damages (Brinkman and Hendrix, 2011). The following offers 

further theoretical and empirical evidence of both directions. 

Food Prices (Market) Affecting Conflict 

The impoverished suffer the most from high food prices. For instance, in Africa, the 

under privileged spend almost half of their income on food (Smith, 2013). Goldstone 

(1982) suggests that food protests often erupt with high unemployment and increases 

in food prices. Walton and Seddon (2008) find that food riots surged in the 1970s, due 

to the integrated world economy where local food prices were more influenced by 

global political economy (Bellemare, 2011). Besley and Persson (2008) study civil 

war and conclude that higher world market export and import prices increase the 

probability of civil unrest. Similarly, Lagi et al. (2011) suggest that global food price 

peaks, beyond a certain threshold, could trigger social unrest with other possible 

contributing factors. Taking into account other determinants including government 

interventions, other pertinent research suggest that higher commodity prices are 

correlated with conflict in developing countries (Brinkman and Hendrix, 2011). 

Recently, Smith (2014) utilizes an instrumental variable approach and concludes that 

in urban Africa a sudden surge of domestic food prices contributes to civil unrest. 

Nevertheless, some scholars argue the same causal direction with different effects. 

Demuynck and Schollaert (2008) demonstrate that a fall of tropical agricultural 

FRPPRGLWLHV¶�SULFHV�FRXOG�IXHO�FRQIOLFW by instigating a rebellion. Similarly, Brückner 

and Ciccone (2010) show that a drop in commodity prices increases the probability of 

civil war. 

Conflict Affecting Food Prices 

Conflict events tend to impede food production, input supplies, and output storage 

(Hitzhusen and Jeanty, 2006). Consequently, slight changes in supply could greatly 

affect prices since the demand for food is essentially inelastic. Therefore, conflict and 

its associated political and social instability could drive food prices (Brinkman and 

Hendrix, 2011). Sufficient evidence indicates that socioǦpolitical events and wars, 

especially armed conflict and terrorism, usually have significant effects on markets 



(Kollias et al., 2011). Guidolin and La (2010) study a large sample of internal and 

inter-state conflict events and conclude that national stock markets tend to perform 

positively when there is an onset of conflict rather than responding negatively. 

To summarize, not only can high food prices lead to conflict, but also conflict could 

contribute to high food prices. For instance, riots swept through the Middle East and 

North Africa, partly resulting from high food prices. In turn, the insecurity afterwards 

disrupted the commodity markets (Brinkman and Hendrix, 2011). The vicious cycle 

can cause even higher food prices and more intense conflict events. 

3. Methodology 

As our data on commodity prices and the number of conflict events are observed in 

time sequence. Recent explorations of such time variant data on commodity prices 

include time series analysis of food and energy prices in India by Bhatt and Kishor 

(2015) and US food prices by Lambert and Miljkovic (2010). We augment their 

approach by considering a structural representation and employing a non-Gaussian 

graphical network based algorithm to identify contemporaneous causation. We study 

the co-movement of commodity prices and conflict events through time with the 

vector autoregression (VAR) model. We follow Hsiao (1979) and construct a subset 

vector autoregression model to capture the relationship between the current position 

of commodity prices and conflict events combined with their lagged values, allowing 

for asymmetric lag length structure. In addition, new information in each period 

(innovations) is then modeled using methods from machine learning as first suggested 

in Swanson and Granger (1997), giving us a structural representation of commodity 

prices and conflict events in contemporaneous time (a structural VAR). 

3.1 Vector Autoregression Model 

Empirical Strategy  

The unrestricted Vector Autoregression (VAR) (Sims, 1980) allows every variable to 

affect every other variable in a system of equations with lags of the same length, 

whereas the subset VAR permits a differential lag structure among variables of the 

system. For example, variable ࢟૚࢚ may affect variable ࢟૛࢚ with one lag, whereas it 

may affect variable ࢟૜࢚ with three lags. Justification for permitting such differences 

relates to both estimation efficiency and forecasting accuracy (Briiggemann and 

Liitkepohl, 2001). Sims (1980) labels the unrestricted VAR as a profligately 

parameterized model. The subset VAR can be treated as the traditional VAR, subject 

to zero restrictions (determined from data) on certain coefficients of lagged variables 



(࢚࢟ି૚ǡ ࢚࢟ି૛ǡǥ ǡ  Hsiao (1979) offers a procedure for placement of these zero .(࢖ି࢚࢟

restrictions (reviewed below).  

Following Moneta et al. (2013), the basic structural VAR in matrix form is given as: 

࢚࢟ ൌ ૙࢚࢟࡮ ൅ ૚࢚࢟ି૚࡮ ൅ ࢖ି࢚࢟࢖࡮൅ڮ ൅ ࢚࢞࡮ ൅  (1)                                          ࢚ࢿ

Where ࢚࢟ (݇ ൈ ͳ) is a vector of ݇ endogenous variables observed at time t. In this 

paper,�࢚࢟ represents wheat price, sorghum price, millet price and number of conflict 

events (݇ ൌ Ͷ). The variable ࢚࢞ (݀ ൈ ͳ) is a vector of exogenous variables at time t. 

We use a set of eleven monthly binary variables to capture seasonal effects. The 

matrices࢏࡮���ሺ݅ ൌ ͳǡǥ ǡ  ሻ are coefficients to be estimated, each associated with a݌

particular lag of the left hand side endogenous variable�࢚࢟. The index ݌ refers to the 

maximum number of lags generating our system (as we are considering the subset 

VAR, ݌ lags may not be the same for all elements of the vector�࢚࢟). The matrix ࡮૙ 

represents contemporaneous coefficient matrix, with a zero for each element of the 

main diagonal. The vector ࢚ࢿ is a (݇ ൈ ͳ) series of white noise innovations, where 

ᇱ࢙ࢿ࢚ࢿሺܧ ሻ ൌ ǡࢳ ݐ��� ൌ ǡݏ ����Ͳ����������Ǥ As in Moneta et al. (2013), we further 

assume that the innovations (ࢿ૚ǡ ǥ ǡ  ࢑ሻ in equation (1) are independent sources ofࢿ

new information (independent of each other, so an information shock in series 1, say 

wheat price, is independent of an information shock from series 2, say sorghum 

price). 

Equation (1) is termed a structural VAR, as elements of the matrix ࡮૙ are not 

necessarily all zero. It is of particular interest in this study to know which off diagonal 

elements are non-zero (structural information). The main reason for this is that we 

have monthly period of observation (monthly data), and potentially a considerable 

amount of inter-series interaction, can take place within the month. For instance, 

wheat price may well affect millet or sorghum prices and these in turn affect conflict 

events within the month (actually days, but such data are not available). 

The model offered in equation (1) can be reformed as a standard VAR. This is, 

perhaps, most easily seen via two steps. First move the contemporaneous value of ࢚࢟ 
in equation (1) to the left hand side of the equation to get equation (2): 

ሺࡵ െ ૙ሻ࢚࢟࡮ ൌ ૚࢚࢟ି૚࡮ ൅ڮ൅ ࢖ି࢚࢟࢖࡮ ൅ ࢚࢞࡮ ൅  (2)                                         ࢚ࢿ



Finally merely solve equation (2) for�࢚࢟. This operation gives us equation (3), the 

reduced form VAR (or subset VAR if the ࢏࡮�ሺ݅ ൌ ͳǡǥ ǡ  ሻ matrices contain nonzero݌

elements somewhere). 

࢚࢟ ൌ ሺࡵ െ ૚࢚࢟ି૚࡮૙ሻି૚࡮ ൅ ൅ڮ ሺࡵ െ ࢖ି࢚࢟࢖࡮૙ሻି૚࡮ ൅ ሺࡵ െ ࢚࢞࡮૙ሻି૚࡮
൅ ሺࡵ െ  ࢚ࢿ૙ሻି૚࡮

�������������������ൌ ૚࢚࢟ି૚࡭ ൅ڮ൅ ࢖ି࢚࢟࢖࡭ ൅ ࢚࢞࡭ ൅ ࢛࢚                                                       (3) 

Here ࢛࢚ is a vector of white noise innovation process in which its covariance matrix 

ሺ࢛࢚࢛ᇱ࢚ሻܧ ൌ  is not necessarily diagonal. Notice the innovation vector ࢛࢚ is now a ࢛ࢳ

combination of the original independent shocks࢚ࢿ�:�࢛࢚ ൌ ሺࡵ െ ࢚ࢿ૙ሻି૚࡮ ൌ ૙࡭
ି૚࢚ࢿ. 

Our goal is to estimate the reduced form VAR in equation (3) and then offer evidence 

on the particular contemporaneous structural ordering behind the matrix ࡭૙
ି૚ . This 

problem was first described and its solution was hinted at in the paper by Swanson 

and Granger (1997). Bessler and Akleman (1998) offer the first data-based solution to 

this task, which followed the suggestions provided in Swanson and Granger (1997). 

When specifying the SVAR in this paper, the method of search proposed by Hsiao 

(1979) using the Hannan-Quinn (Hannan and Quinn, 1979) loss criterion will be 

employed to determine the optimal lag length of each variable in each equation (3). 2 

+VLDR¶V�PHWKRG�LV�DQ�LWHUDWLYH�SURFHGXUH�WR�VSHFLI\�WKH�RSWLPDO�ODJ�OHQJWK�RI�HDFK�
variable in each equation separately for more efficient estimations. However, this 

technique is sensitive to the rank of the importance of the independent variables 

considered, which rests on prior theory (Kling and Bessler, 1985). 

The Identification of SVAR 

Since the lag structures suggested by the SVAR (equation (3)) are usually complex 

and difficult to interpret, we consider the corresponding vector Moving Average 

(MA) representation. We follow the presentation in Moneta et al. (2013): 

                                                             
2 Hannan-Quinn criterion (HQ) is computed according as follows:  

HQ= ln|6| + 2kln(lnT)/T,  

Where 6 is the estimated non-orthogonal innovations correlation matrix from a first estimated VAR 

(equation (3)), k is the number of parameters fit and T is the number of observations. Other information 

criteria (Schwarz loss) were also studied and gave similar results. 



 ࢚࢟ ൌ ࣆ ൅ σ ࣐࢐࢛࢚ି࢐ஶ
௝ୀ଴ ൌ ࣆ ൅ σ ૙࡭૙࡭࢐࣐

ି૚࢛࢚ି࢐ஶ
௝ୀ଴ ൌ ࣆ ൅ σ ࢐ஶି࢚ࢿ࢐ࢸ

௝ୀ଴ ���3      (4) 

where the matrix ࣐࢐ and ࢐ࢸሺൌ  ૙ሻ�represent the moving average parameters and࡭࢐࣐

the impulse response from ࢚࢟ to the shocks ࢐ି࢚ࢿ respectively;ࣆ� is the mean of ࢚࢟. One 

advantage of SVAR is to render sufficient information for policy analysis, such as ࢐ࢸ. 

Thus, it is vital to obtain the matrix ࡭૙, which completes the transformation from ࢛࢚ 
(not orthogonal information shocks) to ࢚ࢿ�(orthogonal information shocks). Usually, 
the constraint that the contemporaneous causal structures among variables of interest 
ሺݕଵ௧ǡ ଶ௧ǡݕ ǥ ǡ  ૙ is lower࡭ ௞௧ሻ should be acyclic is imposed. This implies thatݕ
triangular (Moneta et al., 2013). In the following section, we will summarize a data-
based method to detect the causal structure among the variables in the vector�࢚࢟, 
instead of treating such a structure as a priori determined. Besides this assumption, 
the non-normality of the innovation terms is also needed in order to make full use of 
higher-order statistics of the variables. 

The Innovation Accounting Techniques 

Innovation accounting techniques serve as useful tools to depict the dynamic 

interaction among variables. One such approach is the impulse response function 

(IRF), which describes how every series in the system responds to a one-time-only 

shock in each series. However, considering the case studied in the present paper, a 

better summary of the moving average representation (equation (4)) is the Forecast 

Error Variance Decompositions (FEVD). FEVD assesses the relative importance of 

each series (wheat, sorghum, and millet prices and conflict events) on each other at 

different horizons (distances into the future).The premise of implementing the 

innovation accounting methods above is orthogonal error covariance. Swanson and 

Granger (1997) point out that FEVD can only be easily understood regarding to the 

orthogonalized innovations. To obtain orthogonal innovations, early studies apply a 

Cholesky factorization to the contemporaneous innovation covariance matrix. 

Unfortunately, different orderings lead to different conclusions on the innovation 

accounting analysis (Bessler, 1984). An alternative, Bernanke Decomposition 

approach (Bernanke, 1986) is employed in this study, which relaxes the just-identified 

structure assumption for the VAR residuals. To discover the causal structure among 

the four variables in contemporaneous time, directed acyclic graphs (DAGs), with the 

linear non-Gaussian acyclic model (LiNGAM) search algorithm are used.  

                                                             
3 Note that the exogenous variables (seasonal dummy variables) are excluded from this equation (4), 

suggested by Hsiao-search method when we specify the SVAR model. 



3.2. Linear Non-Gaussian Acyclic Model (LiNGAM) 

A contemporaneous causal structure reveals the joint distribution of the variables 

observed as well as measures and forecasts the consequence of drivers (Shimizu et al., 

2006). Several search algorithms have been used by contemporary researchers: PC 

algorithm (Spirtes et al., 2000), Greedy Equivalence Search (GES) algorithm 

(Chickering, 2003), Linear Non-Gaussian Acyclic Model (LiNGAM) algorithm 

(Shimizu et al., 2006), etc. PC algorithm has been widely used and it assumes 

Gaussian data in tests of conditional independence. Consequently, it may not be able 

to identify a unique matrix ࡭૙. GES algorithm relies on variance-covariance to 

attempt a structural identification of ࡭૙ , leading again to a plethora of observationally 

equivalent structures (alternative ࡭૙ matrices which cannot be distinguished from one 

another based on the data). Moreover, the assumption of the Gaussian distributed 

innovations is usually not the case in most empirical studies (Moneta et al., 2013). 

In this paper, we utilize Independent Component Analysis (ICA)-based LiNGAM to 

discover the causal structure under the assumption behind model in equation (4) ± no 

hidden confounders and reduced form innovation terms with non-Gaussian 

distributions (Shimizu et al., 2006).4 The model is presented as follows (following 

Shimizu et al., 2006): 

௜ݑ ൌ σ ௜ܾ௝ݑ௝௞ሺ௝ሻழ௞ሺ௜ሻ ൅ ݁௜ ൅ ܿ௜ ,                                                                      (5) 

where ݑ௜ǡ ݅ א ሼͳǡʹǡ ǥ ǡ  ሽ denotes the observed innovations from an estimated form of݌

equation (4), which can be organized in a causal order ݇ሺ݅ሻ. That is, only the earlier 

variable could affect the later variable, not vice versa. Coefficient ௜ܾ௝  summarizes the 

causal effect from variable ݑ௝ to ݑ௜ , ݁௜ represents the non-Gaussian, mutually 

independent innovations and ܿ௜ is constant. The relationship in equation (5) can be 

graphically reflected by a directed acyclic graph (DAG) with vertices ݑ௜ and edges ± 

non-zero ௜ܾ௝ . 

Removing the mean of each variable ݑ௜, then the equation (5) can be transformed into 

the matrix representation: 

࢛ ൌ ࢛࡮ ൅  (6)                                                                                                     ࢋ

Where ࡮ represents the coefficient matrix, which could be permutated to strict lower 

triangular form according to the causal ordering ݇ሺ݅ሻ. Denote ࡭ ൌ ሺࡵ െ   ሻିଵ, then࡮
                                                             
4 In fact, LiNGAM is mainly for the continuous-valued data (Shimizu et al., 2006). Even though the 

values in the series of conflict events range as integers from 0 to 154, they cover many different values. 

Thus, still we can manipulate LiNGAM. 



࢛ ൌ  (7)                                                                                                             ࢋ࡭

Where ࡭ could also be permutated to lower triangular form.5 

Independent component analysis (ICA) (Hyvärinen et al., 2004), a technique of 

uncovering non-Gaussian hidden factors, plays a crucial role in LiNGAM. Following 

Shimizu (2014), ICA can be expressed as: 

࢛ ൌ  (8)                                                                                                             ࢙࡭

Where ࢛ and ࢙ stand for the observed variables (࢛) and the independent components 

(information shocks ࢙). The elements ݏ௝ in ࢙ are mutually independent latent 

variables, with non-Gaussian distributions (the independent components). 

As a result, the equation (7) symbolizes the linear independent component analysis 

(ICA) model (8). ICA makes use of non-Gaussianity to estimate the mixing matrix ࡭ 

given the linear and ample observed data ࢛. Moreover, the fix-point algorithms 

proposed by Hyvärinen (1999) can be applied to estimate ࡭ efficiently, such as 

µ)DVW,&$¶�DOJRULWKP��Moneta et al., 2013). After obtaining the estimated matrix ࡭, we 

can calculate the coefficient matrix ࡮. Nonetheless, the order and scaling of the 

independent components are left to be determined. The detailed operations can be 

referred to Shimizu, et al. (2006) and Shimizu (2014). Finally, knowing the vertex and 

causal order, we can draw a complete DAG. LiNGAM is an attractive algorithm for 

the present study since it accommodates non-Gaussian innovations, allowing us to 

identify complete causal structure without prior knowledge. As will be demonstrated 

below, our data are highly non-Gaussian. 

4. Data  

For this research we use data on commodity prices and conflict events of Sudan from 

January 2001 to December 2012. The information on wheat, sorghum and millet 

prices is collected from Global Information and Early Warning System (GIEWS) 

Food Price Data and Analysis Tool, Food and Agricultural Organization (FAO) of the 

United Nations. The GIEWS database reports monthly prices of these commodities 

from the Khartoum port. 

The data for the number of conflict events are obtained from Armed Conflict Location 

& Event Dataset (ACLED) (Raleigh et al., 2010) over the same period. The ACLED 

database provides disaggregated conflict analysis and crisis in African countries. It 

collects comprehensive real-time data on political violence in Africa, including the 
                                                             
5 Different IURP�³VWULFW�ORZHU�WULDQJXODU matrix´, some diagonal elements could be zero in low 

triangular matrix. 



exact dates and locations of conflict events, the types of event, the groups involved, 

fatalities, and changes in territorial control. The data statistics description is given in 

Table 1. To present a more direct visual understanding, plots of the time series data 

are displayed in Figure 1. A common characteristic the price of wheat, sorghum, and 

millet share is an upward trend, which may indicate that they are not stable. The 

number of conflict events in Sudan seems stable, except for a peak between 2011 and 

2012. 

Table 1. Summary Statistics on Wheat Price, Sorghum Price, Millet Price and 

Conflict Events in Sudan; 2001.1 ± 2012.12 Monthly Data. 

Series Units Mean 
Standard 
Deviation 

Coefficient of 
Variation 

Wheat Price Sudanese Pound/90kg 98.466 38.109 0.387 
Sorghum 

Price 
Sudanese Pound/90kg 74.377 40.418 0.543 

Millet Price Sudanese Pound/90kg 108.250 62.375 0.576 
Conflict 
Events 

Number of 
Conflicts/Month 

22.868 21.084 0.922 

 



 

Figure 1. Plots of Wheat Price, Sorghum Price, Millet Price and Conflict Events in 

Sudan; 2001 - 2012, Monthly Data. 

5. Results 

5.1. Stationarity 

VAR model is applied to describe the dynamic interrelationship among stationary 

variables. That is, any particular variable measured over time should be tied to its 

mean. Otherwise, it will lead spurious regression LI�ZH�IDLO�WR�EDODQFH�WKH�VHULHV¶�RUGHU�
on the both sides of the equation (Bessler and Kling, 1984). Therefore, the first and 

necessary step in time-series analysis should be to examine if the levels of each series 

are stationary. One standard unit-root test procedure ² Augmented Dickey-Fuller 

(ADF) test is applied to check whether the four series (wheat price, sorghum price, 

millet price, and conflict events in Sudan) are stationary or not. The null hypothesis is 

that there exists a unit root (nonstationary). ADF test statistics suggest that three 

commodity price series are I(1) at the 5% significance level, while the conflict events 

in Sudan is I(0). They are consistent with the visual judgment suggested by Figure 1. 

5.2. Model Specification & Structure Test 

The optimal lag length in each equation is chosen by the standard: the Hannan and 

Quinn measure with the Hsiao-Search method. Regression Analysis of Time Series 

(RATS) software is implemented for the estimation of SVAR model. However, 

according to the plots of the innovations from the estimation of SVAR, we find some 

jumps in the conflict events series between 2011 and 2012 (which indicates potential 

heterogeneity). Therefore, a structural breakpoint during this period (January 2001 ± 

December 2012) is possible, which may be due to the regime changes occurring in 

Sudan (July 2011).In order to test this hypothesis, the Bai and Perron (1998, 2003) 

SURFHGXUHV�DUH�DSSOLHG��$V�D�UHVXOW��WKH�³FRQIOLFW�HYHQWV´�series suggest a structural 



break in September, 2011, where we also observe a peak in the corresponding 

innovation series. Additionally, the other three series do not indicate the necessity of 

any breakpoints. Interestingly, the 95% confidence interval provided by the Bai-

Perron test ranges from July 2011 to October 2011, which is consistent with regime 

changes in Sudan6. 

5.3. Estimation Results of SVAR 

With the same techniques (Hsiao search algorithm with H&Q criteria), the optimal 

lags for each equation are selected; the results are presented in Table 2 to Table 5. 

Then, we regress the SVAR model again from January 2001 to September 2011, with 

robust variance-covariance matrix considering the possible heteroskedasticity.7 The 

estimation results of the SVAR model specified above are listed in Table 6. 

$FFRUGLQJ�WR�7DEOH����HDFK�YDULDEOH¶V�RZQ�RQH�SHULRG�ODJ�FRXOG�H[HUW�VWDWLVWLFDOO\�
significant and positive effect on itself at the 1% level. Wheat price shows up 

significantly (5% level) in the millet price equation, whereas it is not the case for the 

other commodity prices in some other price series. In terms of the relationship 

between commodity prices and conflict events, only one period lagged wheat price 

has a significantly positive effect on the number of conflict events in Sudan. These 

results seem to suggest that wheat price is the most significant in this particular 

system. We will take advantage of the innovation techniques shown below to depict 

the dynamic relationship among the variables of interest. The plots of the innovations 

derived from the SVAR above are presented in Figure 2. Additionally, applying ADF 

test on these innovations suggests that all the residual series are stationary. 

 

 

 

 

 

Table 2: Hsiao Search on Specification of Wheat Price 

                                                             
6 South Sudan seceded from Sudan on July 9, 2011, which is likely to influence the structural of the 

conflict events time series. 

7 We also estimate the same model from 2001.1 to 2011.7, and from 2001.1 to 2011.10, which were the 

confidence limits of the 95% level (i.e., the lower and upper boundaries of the confidence interval) 

suggested by the Bai-Perron test. The results are not reported here but available upon request. 



HQ Constant 
Seasonal 
Dummies 

Lags of  
Wheat Price 

Lags of 
Sorghum Price 

Lags of  
Millet Price 

Lags of 
Conflict Events 

   
-
1 

-
2 

-
3 

-
4 

-
1 

-
2 

-
3 

-
4 

-
1 

-
2 

-
3 

-
4 

-
1 

-
2 

-
3 

-
4 

6.701 X                  
6.974 X X                 
4.600* X  X                
4.623 X  X X               
4.610 X  X X X              
4.635 X  X X X X             
4.626 X  X    X            
4.653 X  X    X X           
4.672 X  X    X X X          
4.698 X  X    X X X X         
4.622 X  X        X        
4.646 X  X        X X       
4.668 X  X        X X X      
4.655 X  X        X X X X     
4.618 X  X            X    
4.644 X  X            X X   
4.660 X  X            X X X  
4.673 X  X            X X X X 

Each row represents an alternative specification of the dynamic representation of wheat price (in current time) as a function of a 

constant only, a constant and 11 seasonal dummy variables, a constant and lags of wheat price, sorghum price, millet price or 

conflict events.  HQ represents Hannan and Quinn criteria.  We select that model specification that minimizes HQ. We report 

only four lags of each variable here, in actuality we search over twelve lags of each.  All HQ measures on the unreported lags are 

higher than metrics shown in the table. An asterisk (*) indicates minimum. 

 



Table 3: Hsiao Search on Specification of Sorghum Price 

HQ Constant 
Seasonal 
Dummies 

Lags of 
Sorghum Price 

Lags of  
Millet Price 

Lags of  
Wheat Price 

Lags of 
Conflict 
Events 

   
-
1 

-
2 

-
4 

-
5 

-
1 

-
2 

-
3 

-
4 

-
1 

-
2 

-
3 

-
4 

-
1 

-
2 

-
3 

-
4 

6.756 X                  
7.037 X X                 
4.313 X  X                
4.313 X  X X               
4.290 X  X X X              

4.2908
* X  X X X X             

4.297 X  X X X X X            
4.322 X  X X X X X X           
4.342 X  X X X X X X X          
4.354 X  X X X X X X X X         
4.298 X  X X X X     X        
4.325 X  X X X X     X X       
4.317 X  X X X X     X X X      
4.310 X  X X X X     X X X X     
4.314 X  X X X X         X    
4.341 X  X X X X         X X   
4.337 X  X X X X         X X X  
4.364 X  X X X X         X X X X 

Each row represents an alternative specification of the dynamic representation of sorghum price (in current time) as a function of 

a constant only, a constant and 11 seasonal dummy variables, a constant and lags of wheat price, sorghum price, millet prices or 

conflict events.  HQ represents Hannan and Quinn criteria.  We select that model specification that minimizes HQ. We report 

only four lags of each variable here, in actuality we search over twelve lags of each.  All HQ measures on the unreported lags are 

higher than metrics shown in the table. An asterisk (*) indicates minimum. 

 

                                                             
8 It is 4.2895 if four digits are kept. Thus, it is the minimum. 



Table 4: Hsiao Search on Specification of Millet Price 

HQ Constant 
Seasonal 
Dummies 

Lags of  
Millet Price 

Lags of 
Sorghum Price 

Lags of  
Wheat Price 

Lags of 
Conflict 
Events 

   
-
1 

-
2 

-
3 

-
4 

-
1 

-
2 

-
3 

-
4 

-
1 

-
2 

-
3 

-
4 

-
1 

-
2 

-
3 

-
4 

7.375 X                  
7.649 X X                 
4.999 X  X                
5.012 X  X X               
5.036 X  X X X              
5.061 X  X X X X             
5.014 X  X    X            
5.020 X  X    X X           
5.038 X  X    X X X          
5.065 X  X    X X X X         

4.979* X  X        X        
5.005 X  X        X X       
5.013 X  X        X X X      
4.990 X  X        X X X X     
5.005 X  X        X    X    
5.030 X  X        X    X X   
5.031 X  X        X    X X X  
5.048 X  X        X    X X X X 

Each row represents an alternative specification of the dynamic representation of millet price (in current time) as a function of a 

constant only, a constant and 11 seasonal dummy variables, a constant and lags of wheat price, sorghum price, millet price or 

conflict events.  HQ represents Hannan and Quinn criteria.  We select that model specification that minimizes HQ. We report 

only four lags of each variable here, in actuality we search over twelve lags of each.  All HQ measures on the unreported lags are 

higher than metrics shown in the table. An asterisk (*) indicates minimum. 



Table 5: Hsiao Search on Specification of Conflict Events 

HQ Constant 
Seasonal 
Dummies 

Lags of 
Conflict 
Events 

Lags of Wheat 
Price 

Lags of 
Sorghum Price 

Lags of Millet 
Price 

   
-
1 

-
2 

-
3 

-
4 

-
1 

-
2 

-
3 

-
4 

-
1 

-
2 

-
3 

-
4 

-
1 

-
2 

-
3 

-
4 

4.981 X                  
5.208 X X                 
4.571 X  X                
4.597 X  X X               
4.617 X  X X X              
4.641 X  X X X X             
4.550* X  X    X            
4.571 X  X    X X           
4.597 X  X    X X X          
4.618 X  X    X X X X         
4.574 X  X    X    X        
4.585 X  X    X    X X       
4.611 X  X    X    X X X      
4.632 X  X    X    X X X X     
4.573 X  X    X        X    
4.600 X  X    X        X X   
4.625 X  X    X        X X X  
4.623 X  X    X        X X X X 

Each row represents an alternative specification of the dynamic representation of conflict events (in current time) as a function of 

a constant only, a constant and 11 seasonal dummy variables, a constant and lags of wheat price, sorghum price, millet price or 

conflict events.  HQ represents Hannan and Quinn criteria.  We select that model specification that minimizes HQ. We report 

only four lags of each variable here, in actuality we search over twelve lags of each.  All HQ measures on the unreported lags are 

higher than metrics shown in the table. An asterisk (*) indicates minimum. 

 



Table 6: Estimate Result on SVAR, 2001.1 ± 2011.9 Monthly Data. 

Dependent Variable  Variable Coeff Std. Error T-Stat Signif 
Wheat Price (WT) 1 Constant 4.7583  3.0158  1.5778  0.1146  

  2 WT{1} 0.9573  0.0367  26.0829  0.0000  
Sorghum Price (SOR)  Variable Coeff Std.Error T-Stat Signif 

  1 Constant 3.2379  1.6623  1.9479  0.0514  
  2 SOR{1} 0.8265  0.1312  6.2977  0.0000  
  3 SOR{2} 0.3812  0.1624  2.3479  0.0189  
  4 SOR{3} -0.0855  0.1946  -0.4393  0.6604  
  5 SOR{4} -0.3291  0.1234  -2.6663  0.0077  
  6 SOR{5} 0.1635  0.1080  1.5144  0.1299  

Millet Price (MIL)  Variable Coeff Std.Error T-Stat Signif 
  1 Constant -1.2769  2.6651  -0.4791  0.6319  
  2 WT{1} 0.1435  0.0700  2.0503  0.0403  
  3 MIL{1} 0.8831  0.0583  15.1602  0.0000  

Conflict Events (CE)  Variable Coeff Std.Error T-Stat Signif 
  1 Constant 1.7848  3.2123  0.5556  0.5785  
  2 WT{1} 0.0778  0.0387  2.0094  0.0445  
  3 CE{1} 0.5444  0.0747  7.2899  0.0000  

 

 

 

Figure 2. Plots on Innovations from a SVAR on Wheat Price, Sorghum Price, Millet 

Price and Conflict Events; 2001.1 ± 2011.9, Monthly Data. 

 

5.4. Directed Acyclic Graphs (DAGs) Results 

DAGs are employed to discover the causal flows on the contemporary innovations 

from the SVAR (January 2001 ± September 2011) above. DAGs are available in the 

software TETRAD V (Ramsey et al., 2013). We fit the models summarized in Tables 
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2 ± 5 equation by equation using Ordinary Least Squares (OLS) and a system using 

Seemingly Unrelated Regressions (SUR). The innovations from each procedure are 

quite similar and most importantly, the graph structures from both OLS and SUR 

innovations are the same. 

5.4.1 Normality Test Result 

To decide the specific search algorithm for analyzing our estimated innovations, we 

investigate if the innovations (errors) follow Gaussian distributions. PC (or GES) 

algorithm requires that the residuals from the SVAR model are Gaussian distributed 

(normal distributed), whereas LiNGAM assumes that at most one residual follows 

Gaussian distribution. Therefore, normality tests including skewness test, kurtosis 

test, and Jarque-Bera test (Jarque and Bera, 1980, 1987) are executed for each 

innovation series derived from the SVAR. The Jarque-Bera test statistic is chi-squared 

distributed with two degrees of freedom under the null hypothesis that the data are 

normally distributed (i.e., for normal distribution, skewness is 0 and kurtosis is 3, or 

equivalently the excess kurtosis is 0). We present the test for normality results in 

Table 7. 

From Table 7, we observe that skewness statistics do not exhibit strong evidence of 

significant asymmetric property (only the innovations of the conflict events reject the 

null hypothesis at the 1% significance level); the kurtosis statistics indicate peaks for 

only in sorghum and millet price innovation series at the 1% significance level. 

Finally, and most importantly, all of the Jarque-Bera test statistics, considering both 

skewness and kurtosis together, exceed the critical value at the 1% significance level, 

except the residuals from the wheat price (at the 10% significance level). The 

normality tests suggest that each innovation series has non-normal distribution, albeit 

the relatively weak evidence for the non-Gaussian distribution in wheat price 

innovations. Therefore we use LiNGAM search algorithm to explore the 

contemporaneous causal structure9. 

                                                             
9 In fact, in the case of unique Gaussian component, the model can still be estimated with LiNGAM 

given that the exclusive Gaussian part cannot interact with any other components with non-Gaussian 

distribution (Hyvärinen et al., 2004). 



Table 7. Normality Tests for the Innovations, 2001.1 ± 2011.9 Monthly Data. 

Variables 
Skewness10 Kurtosis 

(excess)11 Jarque-Bera12 

(P-Value) (P-Value) (P-Value) 

Wheat Price 
0.297 0.873 5.431 

(0.196) (0.061) (0.066) 

Sorghum Price 
0.070 2.872 40.294 

(0.761) (0.000) (0.000) 

Millet Price 
0.341 1.927 20.380 

(0.137) (0.000) (0.000) 

Conflict Events 
0.721 0.745 12.832 

(0.002) (0.111) (0.002) 

 

5.4.2 LiNGAM Algorithm Result 

The DAG found summarizing the causal structure for the four variables is displayed 

in Figure 3.13 New information stemming from commodity market has an effect on 

conflict situation in Sudan: the innovations of wheat price could affect innovations in 

conflict events through sorghum price. Figure 3 also indicates that wheat price is 

exogenous. Wheat price will influence the innovations in other cereal prices and 

conflict events in Sudan directly or indirectly, indicating that wheat market is the 

dominant market. In addition, among the three commodity prices, directed edges 

(information flows) are also observed from wheat price to millet price and from 

sorghum price to millet price. The positive relationship is given on each arrow, 

indicating that cereals are substitutes. 

                                                             
10 Skewness test is a test of symmetry of the probability distribution of a random variable (the null 

hypothesis is skewness: 0). 
11 Krutosis test is a test of peakedness of the probability distribution of a random variable (the null 

hypothesis is kurtosis = 3 or excess kurtosis = 0). 
12 Jarque-Bera test is a normality test of innovations, taking into account of both skewness and kurtosis. 

Details can refer to Jarque and Bera (1980, 1987). 
13 The graph structure is found using LiNGAM algorithm found on the Carnegie Mellon, Department 

of Philosophy, TETRAD homepage: http:///www.phil.cmu.edu/projects/tetrad 

http://www.phil.cmu.edu/projects/tetrad/


 

 

LiNGAM                                                         

Figure 3. Pattern of Causal Flow among Innovations in Wheat Price, Sorghum Price, 

Millet Price and Conflict Events Based on LiNGAM, SVAR. 

 

5.5. Forecast Error Variance Decompositions (FEVD) 

With the contemporary causal relationships displayed above (Figure 3), we perform 

Bernanke factorization �VHH�(VWLPD¶V�GHVFULSWLRQ�RI�WKLV�VRIWZDUH�SURFHGXUH�HPEHGGHG�
in RATS (Doan, 2010)). The corresponding FEVD results are shown in Table 8. The 

uncertainty in each series at horizons 0, 1, 2 and 12 months ahead is measured as the 

FROXPQ�ODEHOHG�³6WDQGDUG�(UURU´��7KLV�PHDVXUH�LV�DFFRXQWHG�IRU�E\�LQQRYDWLRQV�LQ�
HDFK�VHULHV��:H�ODEHO�HDFK�VHULHV¶�FRQWULEXWLRQ�XQGHU�WKH�FROXPQV�KHDGHG�E\�WKH�ODEHO 
³'XH�7R´��7KH�VXP�RI�HQWULHV�LQ�DQ\�URZ�LV������DOORZLQJ�URXQGLQJ�HUURUV���)RU�
example, looking ahead 12 months, all of the uncertainty in Conflict Events is 

accounted for by variation in Conflict (87.215%), Wheat Price (12.745%), Sorghum 

Price (0.040%), and Millet Price (0.000%). So wheat price shocks account for part of 

the uncertainty in Conflict Events at the 12-month horizon. 



Table 8. Percentage of Forecast Uncertainty Accounted for by Innovations from a 

SVAR in Each Series at Horizons 0, 1, 2, and 12 months ahead. 

Horizon 
(Months 
Ahead) 

Standard 
Error 

Due to: 
Wheat Price 

Due to: 
Sorghum 

Price 

Due to: 
Millet Price 

Due to: 
Conflict 
Events 

 (Wheat Price) 
0 9.708 100.000 0.000 0.000 0.000 
1 13.439 100.000 0.000 0.000 0.000 
2 16.116 100.000 0.000 0.000 0.000 

12 27.656 100.000 0.000 0.000 0.000 
 (Sorghum Price) 
0 7.880 12.181 87.819 0.000 0.000 
1 10.223 12.181 87.819 0.000 0.000 
2 13.223 12.181 87.819 0.000 0.000 

12 24.599 12.181 87.819 0.000 0.000 
 (Millet Price) 
0 11.581 10.958 22.575 66.467 0.000 
1 15.814 15.006 21.549 63.445 0.000 
2 18.803 19.336 20.451 60.213 0.000 

12 33.712 54.143 11.626 34.231 0.000 
 (Conflict Events) 
0 9.345 0.006 0.046 0.000 99.948 
1 10.670 0.561 0.045 0.000 99.394 
2 11.084 1.608 0.045 0.000 98.347 

12 11.926 12.745 0.040 0.000 87.215 
7KH�XQFHUWDLQW\�LQ�HDFK�VHULHV�DW�KRUL]RQV���������DQG����PRQWKV�DKHDG�LV�PHDVXUHG�DV�WKH�FROXPQ�ODEHOHG�³6WDQGDUG�(UURU´��7Kis 

PHDVXUH�LV�DFFRXQWHG�IRU�E\�LQQRYDWLRQV�LQ�HDFK�VHULHV��:H�ODEHO�HDFK�VHULHV¶�FRQWULEXWLRQ�XQGHU�WKH�FROXPQV�KHDGHG�E\�WKH�ODbel 

³'XH�7R´��The sum of entries in any row is 100 (allowing rounding errors). For example, looking ahead 12 months, all of the 

uncertainty in Conflict Events is accounted for by variation in Conflict Events 87.215%, Wheat Price, 12.745%, Sorghum Price, 

0.040% and Millet Price, 0.000%. So Wheat Price shocks account for part of the uncertainty in Conflict Events at the 12-month 

horizon.  

 

Forecast error variance decomposition (FEVD) illustrates how much of the variation 

in one variable at horizon ݐ ൅  can be accounted by the innovations in each variable ݏ

at horizonݐ�. Due to the space, we only present the FEVD at horizon 0 

(contemporaneous time), 1, 2, 12 months ahead (i.e., ݏ ൌ Ͳǡ ͳǡ ʹǡ ͳʹ). Generally, 

within a short period (e.g., 0, 1 or 2 months), each variable can be almost explained 

by the shocks from its own history, such as wheat price (100%), sorghum price 

(87.819%), millet price (66.467%), and conflict events (99.948%) in 

contemporaneous time. However, moving to a longer run (12 months), other variables 

play a more important role in explaining the variation in their uncertainty. For 

instance, wheat price explains as much as 54.143% of the price variation in millet at 

the 12-month horizon, which is much higher than the portion it explains in 

contemporaneous time (10.958%). 



Specifically, wheat is exogenous throughout the12 month horizon, since 100% of 

price volatility can be accounted by innovations in its own market, regardless of 

horizons. Relatively, sorghum is less exogenous, in that around 12% of price volatility 

is explained by innovations in the wheat market. In terms of millet, approximately 

two thirds of its price volatility is attributed to information arising in wheat and 

sorghum markets. At the horizon of 12 months, wheat will account for majority (more 

than half) of the volatility in millet price. The volatility of conflict events in Sudan is 

primarily explained by itself and wheat price (volatility of sorghum price can explain 

a very small part of conflict uncertainty, around 0.045%). Moreover, wheat price will 

display a greater influence on the incidence of conflict events in Sudan as the horizon 

increases. In sum, the interaction between commodity prices and conflict centers on 

the interface between wheat price and conflict events in Sudan.14 

6. Conclusion and Discussion 

In this paper, we attempt to discover the interaction among three major cereal prices 

(wheat, sorghum, and millet) and the onset of conflict events in Sudan, with Structure 

Vector Autoregression (SVAR). Normality tests applied to informational innovations 

suggest that the Linear Non-Gaussian Acyclic Model (LiNGAM) can be executed to 

identify contemporaneous causal structures. The combination of these methods 

enables us to identify the dynamic interaction among three cereal markets and conflict 

events. Specifically, the Directed Acyclic Graphs (DAGs) and the innovation 

accounting techniques (FEVD) suggest that the only linkage between commodity 

prices and conflict events is the shocks from the wheat market on conflict levels, 

through the sorghum market. This impact persists for almost two years, even though it 

decreases over time. Interestingly, as well, we find no feedback from conflict to 

commodity prices. 

The cereal consumption patterns in Sudan may provide a plausible explanation of the 

causal path uncovered here. Historically sorghum has been the most popular staple 

food of Sudan. In recent years, consumer preferences, especially in urban and peri-

urban areas have shifted to wheat (Abdelrahman, 1998; Mustafa et al., 2013; Jayne et 

al., 2010). In the absence of proportional increase in production of wheat, imports 

have been the primary means of meeting this access demand of wheat. Consequently, 

the net price of wheat has also increased. Our empirical results of contemporaneous 

effects show the consequences of this phenomenon. We find that rising wheat price 
                                                             
14 Results from Vector Error Correction Model (VECM) are consistent with SVAR that cereal prices do 

move conflict, while VECM indicates millet price is the driver of conflict instead of wheat price. 

Perhaps the different results based on different models are due to our modest sample size (144 

observations).  



causes sorghum price to increase (perhaps due to the weak substitution effects). Our 

graphical representation illustrates that the increase in the cereal prices causes a surge 

of conflict outbreaks. In addition, structural analysis of the data (January 2001 ± 

December 2012) suggests a potential breakpoint in September 2011. This coincides 

with the regime change as Sudan after July 2011 was separated from its southern part. 

Considering these results, we offer some policy perspectives and suggestions. As 

imported commodities such as wheat obtains more popularity in Africa, the concern 

regarding self-sufficiency is often disregarded on free market and trade grounds. 

However, policy makers should not ignore that often times African countries lack 

conditions necessary for such an environment (Letiche, 2010). Policies including 

subsidy and price regulation may help lower the onset of conflict events to some 

extent. Programs enhancing domestic production of wheat (such as introducing 

advanced technology) are possibly a more sustainable solution. As Mustafa et al. 

(2013) point out, ³:KHDW production has consistently been supported by government 

interventions either through subsidized inputs or price setting, however, it rarely 

exceeds 20 percent of the domestic requirement (some 1.8 million MT) and the 

remaining 80 percent is imported (FAO/WFP, 2011).´�,f high food prices act as a 

catalyst for conflict, lowering or keeping reasonable food prices and supply with 

effective policy could reduce the incidence of conflict and stabilize countries. A 

caveat has to be made here. Despite the multifaceted and complex links between 

FRQIOLFW�DQG�FRPPRGLW\�SULFHV��ZH�FDQQRW�FRQFOXGH�WKDW�RQH�LV�WKH�RWKHU¶V�QHFHVVDU\�
or sufficient condition, taking into consideration many other potential factors. Still, 

our results suggest that cereal prices play a vital role in conflict onset. Moreover, in 

order to promote peace-building and to mitigate conflict, controlling wheat price may 

have an effect in the Sudanese context. 
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